Helicoid transformation Catenoid
deformation of helicoid catenoid
because members of same associate family of surfaces, 1 can bend catenoid portion of helicoid without stretching. in other words, 1 can make (mostly) continuous , isometric deformation of catenoid portion of helicoid such every member of deformation family minimal (having mean curvature of zero). parametrization of such deformation given system
x
(
u
,
v
)
=
cos
θ
sinh
v
sin
u
+
sin
θ
cosh
v
cos
u
{\displaystyle x(u,v)=\cos \theta \,\sinh v\,\sin u+\sin \theta \,\cosh v\,\cos u}
y
(
u
,
v
)
=
−
cos
θ
sinh
v
cos
u
+
sin
θ
cosh
v
sin
u
{\displaystyle y(u,v)=-\cos \theta \,\sinh v\,\cos u+\sin \theta \,\cosh v\,\sin u}
z
(
u
,
v
)
=
u
cos
θ
+
v
sin
θ
{\displaystyle z(u,v)=u\cos \theta +v\sin \theta }
for
(
u
,
v
)
∈
(
−
π
,
π
]
×
(
−
∞
,
∞
)
{\displaystyle (u,v)\in (-\pi ,\pi ]\times (-\infty ,\infty )}
, deformation parameter
−
π
<
θ
≤
π
{\displaystyle -\pi <\theta \leq \pi }
,
where
θ
=
π
{\displaystyle \theta =\pi }
corresponds right-handed helicoid,
θ
=
±
π
/
2
{\displaystyle \theta =\pm \pi /2}
corresponds catenoid, ,
θ
=
0
{\displaystyle \theta =0}
corresponds left-handed helicoid.
Comments
Post a Comment