Explicit methods List of Runge–Kutta methods




1 explicit methods

1.1 forward euler
1.2 explicit midpoint method
1.3 heun s method
1.4 ralston s method
1.5 generic second-order method
1.6 kutta s third-order method
1.7 classic fourth-order method
1.8 3/8-rule fourth-order method





explicit methods

the explicit methods matrix



[

a

i
j


]


{\displaystyle [a_{ij}]}

lower triangular.


forward euler

the euler method first order. lack of stability , accuracy limits popularity use simple introductory example of numeric solution method.











0


0





1






{\displaystyle {\begin{array}{c|c}0&0\\\hline &1\\\end{array}}}



explicit midpoint method

the (explicit) midpoint method second-order method 2 stages (see implicit midpoint method below):











0


0


0




1

/

2


1

/

2


0





0


1






{\displaystyle {\begin{array}{c|cc}0&0&0\\1/2&1/2&0\\\hline &0&1\\\end{array}}}



heun s method

heun s method second-order method 2 stages (also known explicit trapezoid rule):











0


0


0




1


1


0





1

/

2


1

/

2






{\displaystyle {\begin{array}{c|cc}0&0&0\\1&1&0\\\hline &1/2&1/2\\\end{array}}}



ralston s method

ralston s method second-order method 2 stages , minimum local error bound:











0


0


0




2

/

3


2

/

3


0





1

/

4


3

/

4






{\displaystyle {\begin{array}{c|cc}0&0&0\\2/3&2/3&0\\\hline &1/4&3/4\\\end{array}}}



generic second-order method









0


0


0




x


x


0





1



1

2
x







1

2
x









{\displaystyle {\begin{array}{c|ccc}0&0&0\\x&x&0\\\hline &1-{\frac {1}{2x}}&{\frac {1}{2x}}\\\end{array}}}



kutta s third-order method









0


0


0


0




1

/

2


1

/

2


0


0




1



1


2


0





1

/

6


2

/

3


1

/

6






{\displaystyle {\begin{array}{c|ccc}0&0&0&0\\1/2&1/2&0&0\\1&-1&2&0\\\hline &1/6&2/3&1/6\\\end{array}}}



classic fourth-order method

the original runge–kutta method.











0


0


0


0


0




1

/

2


1

/

2


0


0


0




1

/

2


0


1

/

2


0


0




1


0


0


1


0





1

/

6


1

/

3


1

/

3


1

/

6






{\displaystyle {\begin{array}{c|cccc}0&0&0&0&0\\1/2&1/2&0&0&0\\1/2&0&1/2&0&0\\1&0&0&1&0\\\hline &1/6&1/3&1/3&1/6\\\end{array}}}



3/8-rule fourth-order method

this method doesn t have notoriety classical method, classical because proposed in same paper (kutta, 1901).











0


0


0


0


0




1

/

3


1

/

3


0


0


0




2

/

3



1

/

3


1


0


0




1


1



1


1


0





1

/

8


3

/

8


3

/

8


1

/

8






{\displaystyle {\begin{array}{c|cccc}0&0&0&0&0\\1/3&1/3&0&0&0\\2/3&-1/3&1&0&0\\1&1&-1&1&0\\\hline &1/8&3/8&3/8&1/8\\\end{array}}}








Comments

Popular posts from this blog

Thenkalai and Vadakalai sub-traditions Sri Vaishnavism

Discography Pallas (band)

History Flexible-fuel vehicles in the United States