Lemma of Shapley and Folkman Shapley–Folkman lemma



a winner of 2012 nobel award in economics, lloyd shapley proved shapley–folkman lemma jon folkman.


for representation of point x, shapley–folkman lemma states if dimension d less number of summands



d < n

then convexification needed only d summand-sets, choice depends on x: point has representation







x
=



1


d



d





q

d



+



d
+
1


n



n





q

n





{\displaystyle x=\sum _{1\leq {d}\leq {d}}{q_{d}}+\sum _{d+1\leq {n}\leq {n}}{q_{n}}}



where qd belongs convex hull of qd for d (or fewer) summand-sets and qn belongs to qn remaining sets. that is,







x





1


d



d




conv


(

q

d


)


+



d
+
1


n



n





q

n






{\displaystyle x\in {\sum _{1\leq {d}\leq {d}}{\operatorname {conv} {(q_{d})}}+\sum _{d+1\leq {n}\leq {n}}{q_{n}}}}



for re-indexing of summand sets; re-indexing depends on particular point x being represented.


the shapley–folkman lemma implies, example, every point in [0, 2] sum of integer from {0, 1} , real number from [0, 1].


dimension of real vector space

conversely, shapley–folkman lemma characterizes dimension of finite-dimensional, real vector spaces. is, if vector space obeys shapley–folkman lemma natural number d, , no number less than d, dimension exactly d; shapley–folkman lemma holds finite-dimensional vector spaces.








Comments

Popular posts from this blog

Thenkalai and Vadakalai sub-traditions Sri Vaishnavism

Discography Pallas (band)

History Flexible-fuel vehicles in the United States